Course Description

The proficiency strands understanding, fluency, problem-solving and reasoning are an integral part of mathematics content across the three content strands: number and algebra, measurement and geometry, and statistics and probability. The proficiencies reinforce the significance of working mathematically within the content and describe how the content is explored or developed. They provide the language to build in the developmental aspects of the learning of mathematics. The achievement standards reflect the content and encompass the proficiencies.

At this year level:

- understanding includes describing patterns involving indices and recurring decimals, identifying commonalities between operations with algebra and arithmetic, connecting rules for linear relations with their graphs, explaining the purpose of statistical measures and explaining measurements of perimeter and area
- fluency includes calculating accurately with simple decimals, indices and integers; recognising equivalence of common decimals and fractions including recurring decimals; factorising and simplifying basic algebraic expressions and evaluating perimeters and areas of common shapes and volumes of three-dimensional objects
- problem-solving includes formulating and modelling practical situations involving ratios, profit and loss, areas and perimeters of common shapes and using two-way tables and Venn diagrams to calculate probabilities
- reasoning includes justifying the result of a calculation or estimation as reasonable, deriving probability from its complement, using congruence to deduce properties of triangles, finding estimates of means and proportions of populations.

Number and Algebra

- Use index notation with numbers to establish the index laws with positive integral indices and the zero index.
- Carry out the four operations with rational numbers and integers, using efficient mental and written strategies and appropriate digital technologies.
- Investigate terminating and recurring decimals
- Solve a range of problems involving rates and ratios, with and without digital technologies.
- Solve problems involving the use of percentages, including percentage increases and decreases, with and without digital technologies.

Measurement and Geometry

- Choose appropriate units of measurement for area and volume and convert from one unit to another.
- Find perimeters and areas of parallelograms, trapeziums, rhombuses and kites.
- Investigate the relationship between features of circles such as circumference, area, radius and diameter. Use formulas to solve problems involving circumference and area.
• Develop formulas for volumes of rectangular and triangular prisms and prisms in general. Use formulas to solve problems involving volume.
• Solve problems involving duration, including using 12- and 24-hour time within a single time zone.

Statistics and Probability

• Identify complementary events and use the sum of probabilities to solve problems.
• Describe events using language of ‘at least’, exclusive ‘
• Represent events in two-way tables and Venn diagrams and solve related problems.
• Data representation and interpretation.
• Investigate techniques for collecting data, including census, sampling and observation.
• Explore the practicalities and implications of obtaining data through sampling using a variety of investigative processes.

Course Outline

<table>
<thead>
<tr>
<th>Term 1</th>
<th>Number & Algebra</th>
<th>Statistics & Probability</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACMNA149</td>
<td>ACMSP169</td>
<td>“Getting to Know You”</td>
</tr>
<tr>
<td></td>
<td>Investigate index notation & represent whole numbers as products of powers of prime numbers</td>
<td>Identify & investigate issues involving numerical data collected from primary & secondary sources</td>
<td>Collect data</td>
</tr>
<tr>
<td></td>
<td>ACMNA150</td>
<td>ACMSP170</td>
<td>Display data</td>
</tr>
<tr>
<td></td>
<td>Investigate & use square roots of perfect square numbers</td>
<td>Construct & compare a range of data displays including stem-&-leaf plots & dot plots</td>
<td>o tally table vs. frequency tables,</td>
</tr>
<tr>
<td></td>
<td>ACMNA286</td>
<td>ACMSP206</td>
<td>o dot plots,</td>
</tr>
<tr>
<td></td>
<td>Compare, order, add & subtract integers</td>
<td>Explore the practicalities & implications of obtaining data through sampling using a variety of investigative processes</td>
<td>o stem & leaf plots (inc. double),</td>
</tr>
<tr>
<td></td>
<td>ACMNA151</td>
<td>ACMSP294</td>
<td>o pictographs,</td>
</tr>
<tr>
<td></td>
<td>Apply the associative, commutative & distributive laws to aid mental & written computation</td>
<td>Investigate techniques for collecting data, including census, sampling & observation</td>
<td>o column/bar graph vs. histogram</td>
</tr>
<tr>
<td></td>
<td>ACMNA183</td>
<td>ACMSP207</td>
<td>o line graphs</td>
</tr>
<tr>
<td></td>
<td>Carry out the four operations with rational numbers & integers, using efficient mental & written strategies & appropriate digital technologies</td>
<td>Investigate the effect of individual data values, including outliers, on the mean & median</td>
<td>o pie graphs</td>
</tr>
</tbody>
</table>

3-4

Real Number system
Define sets of numbers – whole, counting, rational, irrational, integer

Whole Numbers and Integers
• Place value –whole numbers
• Calculation and mental strategies-whole
• Factors, Multiples and primes
• Define square numbers (index & base)
• Represent square numbers as grids of squares (up to 12², inc. 20²)
• Introduce square root & apply to perfect square numbers

Order of Operations
• Review order of operation for the four operations (mental & written)
• Extend order of operation to include
• brackets
• Extend order of operation to include indices – introduce BIMDAS
• Indices greater than 2

Statistics
• Analyse data (mean, mode, median, range)
• Investigate effect of outliers
• Investigate data from external sources

"Getting to Know You"
• Collect data
• Display data
 o tally table vs. frequency tables,
 o dot plots,
 o stem & leaf plots (inc. double),
 o pictographs,
 o column/bar graph vs. histogram
 o line graphs
 o pie graphs
Term 1

Number & Algebra

Negative Numbers
- Identify situations where negative integers & zero are used
- Review number line & placement of negative numbers
- Calculating with negative numbers

Decimals & Fractions
- Understanding of fraction
- Placing fractions & decimals on a number line
- Converting decimals to fractions
- Converting fractions to decimals, including idea of terminating & recurring
- Rounding
- Making connections between equivalent fractions & decimals
- Add and subtract fractions and decimals
- Multiplication/Division
 - By powers of 10 to whole numbers and decimals
 - By multiples of 10
- Decimal-decimal
- Fractions

Percentages
- Understanding of percentage as “out of 100”
- Placing fractions, decimals & percentages on a number line
- Converting decimals to fractions to percentages, including idea of terminating & recurring

Percentage Change
- Explore idea of percentages greater than 100%
- Calculate percentage of quantities
- Express one quantity as a percentage of another i.e. 4/5 = 80%
- Percentage increase
- Percentage decrease
- Discounts
- Commissions
- Profit & loss (inc. discussion GST)

ACMNA152	Compare fractions using equivalence. Locate & represent positive & negative fractions & mixed numbers on a number line
ACMNA153	Solve problems involving addition & subtraction of fractions, including those with unrelated denominators
ACMNA154	Multiply & divide fractions & decimals using efficient written strategies & digital technologies
ACMNA155	Express one quantity as a fraction of another, with & without the use of digital technologies
ACMNA156	Round decimals to a specified number of decimal places
ACMNA157	Connect fractions, decimals & percentages & carry out simple conversions
ACMNA183	Carry out the four operations with rational numbers & integers, using efficient mental & written strategies & appropriate digital technologies
ACMNA184	Investigate terminating & recurring decimals

<p>| ACMNA158 | Find percentages of quantities & express one quantity as a percentage of another, with & without digital technologies |
| ACMNA187 | Solve problems involving the use of percentages, including percentage increases & decreases, with & without digital technologies |
| ACMNA188 | Solve problems involving profit & loss, with & without digital technologies |</p>
<table>
<thead>
<tr>
<th>Term 2</th>
<th>Number & Algebra</th>
<th>S & P</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>ACMNA182 Use index notation with numbers to establish the index laws with positive integral indices & the zero index</td>
<td>ACMSP167 Construct sample spaces for single-step experiments with equally likely outcomes</td>
<td>ACMSP168 Assign probabilities to the outcomes of events & determine probabilities for events</td>
</tr>
<tr>
<td>6-8</td>
<td>ACMNA175 Introduce the concept of variables as a way of representing numbers using letters</td>
<td>ACMNA176 Create algebraic expressions & evaluate them by substituting a given value for each variable</td>
<td>ACMNA194 Solve linear equations using algebraic & graphical techniques. Verify solutions by substitution</td>
</tr>
<tr>
<td></td>
<td>ACMNA177 Extend & apply the laws & properties of arithmetic to algebraic terms & expressions</td>
<td>ACMNA179 Solve simple linear equations</td>
<td>ACMNA192 Simplify algebraic expressions involving the four operations</td>
</tr>
<tr>
<td></td>
<td>ACMNA191</td>
<td>ACMNA194</td>
<td>ACMNA193</td>
</tr>
<tr>
<td>9-10</td>
<td>ACMNA175 Introduce the concept of variables as a way of representing numbers using letters</td>
<td>ACMNA176 Create algebraic expressions & evaluate them by substituting a given value for each variable</td>
<td>ACMNA194 Solve linear equations using algebraic & graphical techniques. Verify solutions by substitution</td>
</tr>
<tr>
<td></td>
<td>ACMNA177 Extend & apply the laws & properties of arithmetic to algebraic terms & expressions</td>
<td>ACMNA179 Solve simple linear equations</td>
<td>ACMNA192 Simplify algebraic expressions involving the four operations</td>
</tr>
<tr>
<td></td>
<td>ACMNA191</td>
<td>ACMNA194</td>
<td>ACMNA193</td>
</tr>
</tbody>
</table>

Mathematics Course Outline Year 8

- **Establish the formulas for areas of rectangles, triangles & parallelograms & use these in problem solving**
 - ACMMMG195
 - Choose appropriate units of measurement for area & volume & convert from one unit to another
 - ACMMMG196
 - Find perimeters & areas of parallelograms, trapeziums, rhombuses & kites
 - Choosing appropriate units
 - Unit conversions
 - Revise perimeter & area formula for squares, rectangles & triangles – apply practical situations allowing students to choose appropriate units & convert between units
 - Introduce formula for perimeter & area of parallelograms, rhombuses, kites & trapeziums
 - Area of composite shapes

- **Investigate the relationship between features of circles such as circumference, area, radius & diameter. Use formulas to solve problems involving circumference & area**
 - ACMMMG197
 - Revise parts of a circle
 - Practical activity: draw & measure circles to derive circumference & diameter then calculating circumference divide diameter to derive pi
 - Introduce formula for area of circle – compare to circumference formula

- **Solve problems involving time duration, including using 12 & 24 hour within a single time zone**
 - ACMMMG199
 - Reading times in 12 and 24 hour time
 - Reading timetables and understanding time taken; elapsed time for journeys
 - Time zones-Australia & Asia

- **Use index notation with numbers to establish the index laws with positive integral indices & the zero index**
 - ACMNA182
 - Revise indices of whole numbers & extend to include the zeroth index law ($a^0=1$)
 - Introduce each index law
 - $a^m \times a^n = a^{m+n}$
 - $a^m \div a^n = a^{m-n}$
 - $(a^m)^n = a^{m \times n}$
 - $a^1 = a$
 - $a^0 = 1$ (if $a \neq 0$)

- **Introduce the concept of variables as a way of representing numbers using letters**
 - ACMNA175
 - Create algebraic expressions & evaluate them by substituting a given value for each variable
 - ACMNA177
 - Extend & apply the laws & properties of arithmetic to algebraic terms & expressions
 - ACMNA179
 - Solve simple linear equations
 - ACMNA192
 - Simplify algebraic expressions involving the four operations
 - ACMNA194
 - Solve linear equations using algebraic & graphical techniques. Verify solutions by substitution

- **Construct sample spaces for single-step experiments with equally likely outcomes**
 - ACMSP167
 - Assign probabilities to the outcomes of events & determine probabilities for events
 - ACMSP168

- **Revise language of probability**
 - Associate language as a decimal between 0 & 1
 - Introduce sampling
 - Calculate sample space of simple one-step probability events
 - Calculate using decimals, fractions & percentages the probability of events of a sample space
<table>
<thead>
<tr>
<th>Term 3</th>
<th>Number & Algebra</th>
</tr>
</thead>
</table>
| 1 | ACMNA153 Solve problems involving addition & subtraction of fractions, including those with unrelated denominators
ACMNA154 Multiply & divide fractions & decimals using efficient written strategies & digital technologies
ACMNA155 Express one quantity as a fraction of another, with & without the use of digital technologies |
| 2 | Fractions
• Revise fractions
• Compare fractions
• Calculate fractions using four operations
• Solving problems
• Express one quantity as fraction of another |
| 3 | ACMNA153 Solve problems involving addition & subtraction of fractions, including those with unrelated denominators
ACMNA154 Multiply & divide fractions & decimals using efficient written strategies & digital technologies
ACMNA155 Express one quantity as a fraction of another, with & without the use of digital technologies |
| 4 | Ratios
• Introduce meaning of ratio & everyday examples (investigate)
• Compare & contrast use of fractions, percentages & ratios to describe groups containing items in two different categories
• Calculate fractions, percentages & ratios of items in group
• Calculate ratios given from two fractions that make a whole
• Simplify ratios by a common factor
• Equivalent ratios
• Increase quantities in a recipe for increased number of people |
| 5 | ACMNA173 Recognise & solve problems involving simple ratios
ACMNA188 Solve a range of problems involving rates & ratios, with & without digital technologies |
| 6 | Rates
• Investigate meaning of rates
• Identify common examples of rates (i.e. heart rate, interest rate)
• Calculate & measure rates
• Extend concept of rates that do not include time
• Best buys
• Speed/distance/time
• Explore how rates are represented on travel graphs
• Construct travel graphs from word descriptions & extract rates from travel graphs |

<table>
<thead>
<tr>
<th>Term 3</th>
<th>Measurement & Geometry</th>
</tr>
</thead>
</table>
| 4 | ACMNA173 Recognise & solve problems involving simple ratios
ACMNA188 Solve a range of problems involving rates & ratios, with & without digital technologies |
| 5 | ACMMG181 Describe translations, reflections in an axis, & rotations of multiples of 90° on the Cartesian plane using coordinates. Identify line & rotational symmetries
ACMMG20O Define congruence of plane shapes using transformations |
| 6 | Plotting Cartesian Coordinates
• Revise coordinates
• Introduce Cartesian plan & coordinates, & define x-axis, y-axis, co-ordinates & quadrants
• Practice plotting
• Create & analyse line graphs from real data sets |
| 7 | Transformations & Symmetry
• Translation, reflection & rotation
• Apply translation to translation of points on the Cartesian plane
• Translate geometric shapes on Cartesian plane by translating co-ordinates of each of the vertices
• Line of symmetry
• Reflect geometric shapes across line of symmetry by reflecting the Cartesian coordinates of each vertex
• Rotate geometric shapes by 180 & 90 degrees around a point on Cartesian plane
• Identify combinations of three transformations & draw objects after more than one transformation. |
| 8 | Angles & Parallel Lines
• Revise angle types
• Construct & measure |
<table>
<thead>
<tr>
<th>ACMMG164</th>
<th>Investigate conditions for two lines to be parallel & solve simple numerical problems using reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACMMG165</td>
<td>Classify triangles according to their side & angle properties & describe quadrilaterals</td>
</tr>
<tr>
<td>ACMMG166</td>
<td>Demonstrate that the angle sum of a triangle is 180° & use this to find the angle sum of a quadrilateral</td>
</tr>
<tr>
<td>ACMMG167</td>
<td>Calculate volumes of rectangular prisms</td>
</tr>
<tr>
<td>ACMNA151</td>
<td>Apply the associative, commutative & distributive laws to aid mental & written computation</td>
</tr>
<tr>
<td>ACMNA149</td>
<td>Investigate index notation & represent whole numbers as products of powers of prime numbers</td>
</tr>
<tr>
<td>ACMNA178</td>
<td>Given coordinates, plot points on the Cartesian plane, & find coordinates for a given point</td>
</tr>
<tr>
<td>ACMNA198</td>
<td>Develop the conditions for congruence of triangles</td>
</tr>
<tr>
<td>ACMNA199</td>
<td>Factorise algebraic expressions by identifying numerical factors</td>
</tr>
<tr>
<td>ACMNA193</td>
<td>Plot linear relationships on the Cartesian plane with & without the use of digital technologies</td>
</tr>
<tr>
<td>ACMNA194</td>
<td>Solve linear equations using algebraic & graphical techniques. Verify solutions by substitution</td>
</tr>
</tbody>
</table>

Term 3

<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACMMG200</td>
<td>Define congruence of plane shapes using transformations</td>
</tr>
<tr>
<td>ACMMG201</td>
<td>Develop the conditions for congruence of triangles</td>
</tr>
<tr>
<td>ACMNA192</td>
<td>Simplify algebraic expressions involving the four operations</td>
</tr>
</tbody>
</table>

Term 4

<table>
<thead>
<tr>
<th>1-2</th>
<th>3</th>
<th>4-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACMNA190</td>
<td>Extend & apply the distributive law to the expansion of algebraic expressions</td>
<td></td>
</tr>
<tr>
<td>ACMNA191</td>
<td>Factorise algebraic expressions by identifying numerical factors</td>
<td></td>
</tr>
<tr>
<td>ACMNA179</td>
<td>Plotting Linear Equations</td>
<td></td>
</tr>
<tr>
<td>ACMNA182</td>
<td>ICT investigation using Excel or graphics</td>
<td></td>
</tr>
</tbody>
</table>

Concurrence
- Types of triangles – naming, classifying, angle relationships
- Find missing angle in triangle
- Define congruent shapes
- Labelling vertices & sides
- Show how two triangles are congruent using
 - Practice writing congruence statements
 - Introduce rules for congruence of a triangle
 - SSS
 - SAS
 - RHS
 - Examine when congruence isn’t prescribed
 - AAA
 - ASS

Properties of Quadrilaterals
- Review features of squares, rectangles, parallelograms, kites & trapeziums
- Examples of proofs utilising the properties of congruent triangles – i.e. show that in each case the interior angles sum to 360° by dividing quadrilaterals into two triangles
- Students to create own proofs based on congruent triangles

Surface Area & Volume
- Examine the surface area of prisms made up of rectangles & triangles
- Drawing nets
- Revise units of volume & structure of prisms
- Introduce formula for volume of rectangular prisms
- Introduce formula for volume of triangular prisms

Distributive Law
- Expanding brackets
 - a(b + c) & a(b – c)
 - include variables involving indices
- Grouping like terms/simplifying
- Directed numbers, including negative multiplier

Factorisation
- Introduce as inverse process of expanding brackets
- Factorise to single & double brackets

Cartesian Coordinates
- Revise Cartesian plane
- Examine number plane grid
 - -10 < y < 10 & -10 < x < 10 with students reading off & plotting coordinates
- Review creating a table from a rule, plot the relationship & write the formula
- Graph linear functions
<table>
<thead>
<tr>
<th>Term</th>
<th>Statistics & Probability</th>
<th>Venn Diagrams & Two-Way Tables</th>
<th>Sampling Techniques</th>
<th>Representative Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>ACMSP168
Assign probabilities to the outcomes of events & determine probabilities for events
ACMSP204
Identify complementary events & use the sum of probabilities to solve problems
ACMSP205
Describe events using language of 'at least', exclusive 'or' (A or B but not both), inclusive 'or' (A or B or both) & 'and'</td>
<td>ACMSP282
Represent events in two-way tables & Venn diagrams & solve related problems</td>
<td>ACMSP284
Investigate techniques for collecting data, including census, sampling & observation
ACMSP206
Explore the practicalities & implications of obtaining data through sampling using a variety of investigative processes
ACMSP293
Explore the variation of means & proportions of random samples drawn from the same population</td>
<td>ACMSP207
Investigate the effect of individual data values, including outliers, on the mean & median</td>
</tr>
<tr>
<td>7</td>
<td>ACMSP292
Introduce Venn diagrams to represent two inclusive events
Identify examples of inclusive events might be represented by Venn diagrams & estimate overlap
Introduce two-way tables to represent two pairs of mutually exclusive variables</td>
<td>Revise probability
Define complementary events & identify examples
P(A) + P(B) = 1
Calculate probabilities of complementary events in word problems
Language ‘at least’, exclusive ‘or’ (A or B but not both), inclusive ‘or’ (A or B or both) & ‘and’
Practice calculating probabilities of mutually exclusive events
Contract exclusive ‘or’ & inclusive ‘or’</td>
<td>Introduce idea of a population & compare terms census & sample – pros & cons
ABS census data
Use Excel to simulate probability experiments to produce large number of events
Simple Random Sample
Systematic Random Sample
Stratified Random Sample
Identify which technique was used from word problems
Identify which technique should be used in various scenarios</td>
<td>Discuss reasons why a sample may not be representative of a population
Biased surveys – students to identify bias in survey (how could survey be conducted differently to remove the bias?)
Collect data on average house prices from a particular suburb. Explain why individual data sets may not be representative of the city</td>
</tr>
<tr>
<td>Term 4</td>
<td>Complementary Events (Inclusive & Exclusive)
Revise probability
Define complementary events & identify examples
P(A) + P(B) = 1
Calculate probabilities of complementary events in word problems
Language ‘at least’, exclusive ‘or’ (A or B but not both), inclusive ‘or’ (A or B or both) & ‘and’
Practice calculating probabilities of mutually exclusive events
Contract exclusive ‘or’ & inclusive ‘or’</td>
<td>Venn Diagrams & Two-Way Tables
Introduce Venn diagrams to represent two inclusive events
Identify examples of inclusive events might be represented by Venn diagrams & estimate overlap
Introduce two-way tables to represent two pairs of mutually exclusive variables</td>
<td>Sampling Techniques
Introduce idea of a population & compare terms census & sample – pros & cons
ABS census data
Use Excel to simulate probability experiments to produce large number of events
Simple Random Sample
Systematic Random Sample
Stratified Random Sample
Identify which technique was used from word problems
Identify which technique should be used in various scenarios</td>
<td>Representative Sample
Discuss reasons why a sample may not be representative of a population
Biased surveys – students to identify bias in survey (how could survey be conducted differently to remove the bias?)
Collect data on average house prices from a particular suburb. Explain why individual data sets may not be representative of the city</td>
</tr>
<tr>
<td>8</td>
<td>ACMSP292
Represent events in two-way tables & Venn diagrams & solve related problems</td>
<td>ACMSP282
Introduce Venn diagrams to represent two inclusive events
Identify examples of inclusive events might be represented by Venn diagrams & estimate overlap
Introduce two-way tables to represent two pairs of mutually exclusive variables</td>
<td>ACMSP284
Investigate techniques for collecting data, including census, sampling & observation
ACMSP206
Explore the practicalities & implications of obtaining data through sampling using a variety of investigative processes
ACMSP293
Explore the variation of means & proportions of random samples drawn from the same population</td>
<td>ACMSP207
Investigate the effect of individual data values, including outliers, on the mean & median</td>
</tr>
<tr>
<td>9-10</td>
<td>ACMSP292
Represent events in two-way tables & Venn diagrams & solve related problems</td>
<td>ACMSP282
Introduce Venn diagrams to represent two inclusive events
Identify examples of inclusive events might be represented by Venn diagrams & estimate overlap
Introduce two-way tables to represent two pairs of mutually exclusive variables</td>
<td>ACMSP284
Investigate techniques for collecting data, including census, sampling & observation
ACMSP206
Explore the practicalities & implications of obtaining data through sampling using a variety of investigative processes
ACMSP293
Explore the variation of means & proportions of random samples drawn from the same population</td>
<td>ACMSP207
Investigate the effect of individual data values, including outliers, on the mean & median</td>
</tr>
</tbody>
</table>

This course outline may be subject to change, any changes will be communicated to students.
Assessment Outline

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Number of Tasks</th>
<th>Task Weighting</th>
<th>Total Task Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests (4)</td>
<td>4</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Semester 1 and 2 Exam</td>
<td>2</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Investigations (2)</td>
<td>2</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

The above weightings are intended to show the importance of each task. The allocation of a grade at the end of a semester is determined based on grade related descriptors issued by School Curriculum and Standards Authority.

This assessment outline may be subject to change, any changes will be communicated to students.